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ASD-TDR-62-625
FOREWORD

This report was prepared by the Environmental Control Branch of the Booster and
Power Division, Dyna-Soar Engineering Office, Deputy for Engineering, Aeronautical
Systems Division, Wright-Patterson Air Force Base, Ohio, under Weapon System 620A,

The work was performed for the University of Buffalo, Buffalo, New York, in partial
fulfillment of the requirement for the degree of Master of Science in the field of
Mechanical Engineering. Professor Howard E. Strauss served as graduate advisor. The
University of Buffalo has granted permission to the USAF to publish and distribute the
thesis as an ASD Technical Documentary Report. Only those changes necessary to make
the thesis meet the requirements of an ASD Technical Documentary Report have been
made.
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ABSTRACT

Atmospheric re-entry of earth-orbital, hypersonic glide vehicles creates thermal
problems. The heat affects not only the materials and constructicn of the airframe but
alsothe crew and various subsystems of the vehicle. Successful solution of these problems
depends upon the development of an effective thermal protective concept, which will also
give the designer some latitude in his design philosophy. The role of the protective
systerm is to significmntly attenuate the influx of heat that is aerodynamically generated
within the surrounding boundary layer. Attenuation is accomplished by combining external
radiation shielding elements with backup insulation materials and an appropriate cooling
system,

Analytical procedures are presented for determining significant system parameters
by transforming the differential heat conduction or diffusion equation into an algebraic
expression by employing the calculus of finite differences. The adaptationofthe resulting
equation to digital computer programming is discussed, and numerical results are
presented to indicate systems of minimum weight.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

MM i éAMAR

| Chief, Dyna-Soar Engineering Office
Deputy for Engineering

FOR THE COMMANDER:
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1.0 INTRODUCTION
1.1 General

Although aeronautical technology offers a number of techniques for the successful
recovery of rocket-boosted orbital vehicles, the most attractive philosophy is derived
from the principles of lifting body re-entry. Unlike trajectories characteristic of
ballistic or semiballistic shapes that are controllable only to the extent of orbit ejection
sequencing, a lifting body or glide vehicle can be piloted to a preselected site where a
conventional landing is made. Atmospheric re-entry descent, within limited parameters,
depends only on the judicious use of the kinetic and potential energy of the vehicle.

The maneuvering capability of this type of vehicle during descent can be defined within
velocity-altitude limitations of a flight corridor that is bounded by aerodynamic, aero-
elastic, structural, and heating considerations. The upper limit is a result of instability
of the vehicle at high angles of attack or a maximum attainable aerodynamic lift, while
the lower limit is a function of maximum heating rates, allowable acceleration loads, or
permissible dynamic pressure. An example of a glide-vehicle flight corridor is shown in
Figure 1.

300

280

260

240

220

200
g LIMIT

180

ALTITUDE (FT X 107%

HEATING LIMIT

| | | | | | | | | | | |
o 2 4 6 8 o 12 14 16 i8 20 22 24 26
VELOCITY (FT PER SECOND X 107 3)

Figure 1, Flight Corridor

Manuscript released by author on 20 June 1962 for publication as an ASD Technical
Documentary Report.
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Various thermal protection concepts affect both of these limits for the following
reasons:

a. Aerodynamic lift is affected by wing loading or by the weight of the thermal
protection system.

b. Load carrying capability is a function of structural temperature, which is
influenced by the effectiveness of the thermal protection system.

As a result, thermal protection system optimization, that is, adequate protection for
minimum weight, contributes to a broader astitude and velocity operational capability.

Glide bodies, unlike ballistic shapes, experience long re-entry times while exposed to
relatively low aerodynamic-heating rates. This heat is transferred by boundary-layer
convection to the surface of the vehicle where it can be radiated to space, absorbed by
the outer skin, and transmitted to internal sections. Considerable advantage might be
realized in external dissipation of this convective heat, since the technique does not
result in additional vehicle weight, but is a function merely of the emissive power of the
outside surface. A knowledge of this factor along with the rate at which heat is aero-
dynamically generated will enable, by use of the Stefan-Boltzmann relationship, an
approximation of the equilibrium temperature of the exterior of the vehicle,

Since the surface equilibrium temperatures during re-entry flight will exceed the
internal conditioned compartment temperature, heat will penetrate to areas of compart-~
ment location. The modes of transfer, which include solid conduction, radiation, gaseous
conduction, and convection, must be minimized to a degree predicated by the relative
contribution of each to the total heat influx.

Heat conduction that passes energy directly through the sections of a solid in contact
with the hotter surfaces can be lowered by using materials that are classified as poor
thermal conductors and by reducing the cross-sectional area normal to the flow path.

The latter may be achieved by incorporation of a large number of gaseous spaces, since
conduction through a gas is much less than conduction through a solid. Another technique
would involve breaking the solid down into a collection of fine particles, which, by forming
many points of contact within the material, would result in an increased resistance to the
flow of heat.

Heat transfer by radiation from the surface of a hot body occurs through a mechanism
similar to electromagnetic wave phenomena and is, in fact, frequency dependent and
intimately connected to that of light transmission. Geometric orientation of the surfaces
relative to the incident radiation and techniques for reducing surface emissivity both
contribute to the attenuation of this process.

The transfer of heat by conduction within a gas is described as diffusion process in
which the molecules are in motion between warm and cool areas. In addition, an
exchange in kinetic energy occurs as wandering molecules collide with one another.
Gases in a free unconfined state exhibit virtually no change in thermal conductivity as
a result of pressure changes, because their average path length decreases as the
number of molecules increase in proportion to the pressure. On the other hand, confined
gases show lower thermal conductivities at reduced pressures because the number of
molecules available for transporting heat energy approaches zero. This principle can be
applied to reduce the effects of gas conduction by using the ambient pressures existing
at altitude during re-entry.

2
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Heat convection takes place as a result of a free-molecular mixing motion initiated by
temperature differences within a gas. If the gas is contained within small spaces, the
motion of molecules will be confined to an extent negating heat convection.

If during re-entry the temperatures within the pressurized areas of the vehicle are
maintained essentially at equilibrium without using compartment conditioning equipment
to absorb heat penetrating from the external surface, then this function must be assigned
to the thermal protection system. The feasibility of this direction is justified in view of
available techniques that are more effective than those that depend on the circulation of
a gaseous cooling media within a relatively large volume. A description of the aspects of
thermal protection systems is presented in the following section. '

1.2 Thermal Protection Concepts

1.2.1 General

Systems protecting the internal structure or compartments from the effects of aero-
dynamic heating consist of three major integrated elements. First, the exterior surface
forming high emissivity heat-shield segments transmits to the surrounding environment
a great deal of the heat reaching the vehicle from the boundary layer. The effectiveness
of this scheme in minimizing internal heat penetration is shown in Figure 2. The second
element, a lightweight thermal insulation, attenuates the remaining heat conducted to
areas surrounding the environmentally controlled compartments. At this location, the
heat is removed by a cooling system, which serves as the remaining element.

! \

PERCENT

X \\\

\

12 14 16 18 20 22 24 26

AVERAGE SURFACE TEMPERATURE (DEGREES FXx 10 ~2)
Figure 2. Percent of Total Heat Removed by Cooling System
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1.2.2 Radiation and Ablation Cooling

The primary factors associated with the development of radiation heat shields are
those governing the selection of materials, emissivity of the external surface, and the
evolution of a suitable design configuration. Criteria forming a basis for material
selection include oxidation resistance and strength requirements that are compatible
with the specified service life and the external environments. As a result of the latter,
surface-temperature histories of the vehicle are predictable functions of instantaneous
heat generation rates during re-entry and the emissivity of the surface. The relation-
ship between heating rates, emissivity, and heat-shield equilibrium temperature is
shown in Figure 3. Details of design configurations are concerned more with the
incorporation of stiffness and thermal stress alleviating features into lightweight heat
shields to preclude panel buckling.

T a0 l i RATE OF HEAT TRANSFER
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o
=
=
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w

10

Figure 3. Effect of Surface Emissivity and Heat Transfer Rate on Equilibrium Temperature

Vehicle surfaces that can withstand temperatures up to 2000°F can be constructed
with super alloy materials using current manufacturing methods and materials technology.
As metallurgical research uncovers new materials, this limit might be extended to
3000°F. Refractory metals, for example, are generally useful to 2700°F if effective
oxidation-resistant coatings are available and high surface emissivities can be main-
tained. Furthermore, refractory metals are not suitable for many structural applica-
tions; hence, aerodynamic loads must be transmitted to more ductile members, Other
refractory materials such as ceramics and graphites possess excellent elevated tempera-
ture characteristics which, when integrated with suitable design concepts, also can be
applied to exterior surface panels.

4
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Still another approach is that of using an ablative surface that is combined with
radiation shields to give a re-entry vehicle capability for returning from superorbital
missions, Under these circumstances, trajectories that result in heating rates that are
associated with the ablation process must be considered.

1.2.3 Thermal Insulations and Cooling Systems

1.2,3.1 General

Radiation cooling that provides a high surface emissivity for a low weight, and
materials characterized by relatively high heats of ablation, although effective, do not
completely solve the problems that are associated with thermal protection for re-entry
heating. As a result of extended flight through the earth’s atmosphere, temperature
gradients are established that cause heat to penetrate the external surface. This heat
must be dissipated to maintain environments that are compatible with those required
for human comfort and equipment operation.

Several approaches can be considered for removing this heat or confining it to a
region between the compartment shell and the outer surface of the vehicle.

The methods that involve either the principles of heat storage or the vaporization of a
liquid are as follows:

a. Thermal insulation systems
b. Liquid heat sink systems

¢. Systems that combine thermal insulation and liquid heat sinks.

Low thermal diffusivity insulations can delay the influx of aerodynamic heat until
completion of the mission. Two obvious physical-property requirements for these
materials are a low thermal conductivity and high specific heat at the temperature and
pressure levels that result from re-entry trajectories. Insulations available from
industry, which can retain their form at elevated temperatures and low pressures do
not display values for the properties just mentioned to permit their effective application.
Denser forms and thicker sections of the materials must be employed as compensating
measures to obtain the desired temperature-time response throughout the system.

Protection systems using the latent heat of vaporization of suitable coolants represent
a technological approach for removing boundary-layer heat that penetiates the exterior
surface. The total heat removed or the weight of the coolant expanded during a re-entry
trajectory is a function of the thermal conductance between the heated and cooled surfaces.
A convenient means for reducing the conductance involves the use of insulating materials
and form a protection system configuration when combined with a cocling system.

Conformation of the schemes selected for further review and optimization resulted
from the use of relationships derived in Reference 4 of the Bibliography. Solutions are
presented in Figure 4 as a result of considering step-function temperature inputs that
are equivalent to mean surface temperatures associated with re-entry flight. Weights
for combined systems were determined from a steady-state heat balance that equated
the heat conducted through the insulation to that removed by the coolant. The results
verify that the most effective thermal-protection systems for lifting body re-entry vehicles
combine insulations with expendable coolants.
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1.2.3.2 Insulation Materials

The selection of a thermal insulation involves a comparison of properties that indicates
the potential capabilities of the materials. The insulating materials must provide not only
a maximum resistance to the flow of heat but they must be light in weight and demonstrate
the ability to endure mission environments with no evidence of degradation that is detri-
mental to service life,

A measure of the relative effectiveness of insulations may be derived by expressing
the weight of the material as a function that depends on the physical properties. If
effectiveness can be defined as the reciprocal of the weight of insulation, the function
will be equal to the inverse of the density-thermal conductivity product. The effects of
altitude on this product should be considered when thermal conductivity values are
selected.

A comparison of several commercially available, uncontained insulating materials is
shown in Figure S. The possibility exists that material characteristics dictate contain-
ment concepts that significantly affect the thermal conductance of the system. For these
cases, an apparent thermal conductivity that includes containment effects should be used

3.5 ] I
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W im
° |4 3.0
[ ]
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— 2.5 N\
_ |
E 4
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» 2.0 P
(7]
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i POWER MIXTURE \
> 12 LBS/FT
= 1.5 ~— \
W \
z i.o— _ —
S FIBROUS ASBESTOS
< \3 LBS PER CU, FT.
o
4 5 6 7 8 9 10

TEMPERATURE (DEGREES F X 10 %)

Figure 5. Comparison of the Effectiveness of Insulations
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for a more accurate comparison. These effects are included simply by a weighted adjust-
ment of both the thermal conductivity and density.

Additional important characteristics of insulating materials are the following:
a. Adequate compressive strength to insure retention and prevent settling;

b. Softening point above the maximum operating temperature to prevent a loss of
compressive strength and particle shape;

¢. Minimum contact area between individual particles to reduce solid conduction;

d. Absence of sintering at operating temperatures to prevent degradation of
material properties;

e. Ability to attenuate radiant heat transfer by particle orientation and emissive
characteristics, which cause sufficient radiation blockage;

f. Particle size distribution and construction to minimize compaction under vibra-
tional or gravitational forces;

g. Low vapor pressure at maximum operating temperatures to preclude loss of the
material;

h. Particle size that is so small that the mean free path of the air molecules be-
comes larger than the particle spacing at moderate vacuums.

Powder materials and fibrous forms of insulation have physical characteristics that
effectively reduce each of the contributing modes of heat transfer and satisfy the
preceding requirements. Gas conduction, for example, is lowered by the orientation of
fine particles to create pore sizes, which, at moderate vacuums, are smaller than the
mean free path that the gas molecules travel before colliding. Constituent materials for
the insulation are chosen on the basis of their ability to attenuate heat flow through the
materials. Major constituents such as alumina, potassium titanate, and fibrous ashestos
have excellent insulating qualities, which, when coupled with the many joint resistances at
the points where particles contact one another, resist the flow of heat by solid conduction.
Thermal radiation can be reduced by the addition of both radiation absorbing particles
(such as zirconia, carbon, and silicon nitride) and radiation reflecting or scattering
particles (such as aluminum, platinum, or tantalum flakes). The effect of temperature
and altitude on the thermal conductivity of an insulation powder is shown in Figure 6.

Although fine powders permit a wider flexibility in selecting ingredients for specific
temperature applications than do fibrous. mats, problems that are associated with the
packaging of these materials tend to overshadow any relative advantages. Specific
problems include the following:

a. Compaction and settling of constituents under vibratory loads,
b. Excessive resistance to air flow during boost venting,

c. Development of filter cunfigurations to retain fine particles,

d. Insulation package buckling due to thermal stress.
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The more common fibrous insulations contain either aluminum silicate or silica fibers,
which are useful to 2000°F These are commercially available in various forms, namely,
bulk, batt, blanket, cloth, molded shapes, and paper. The diameters of the fibers are in the
range from 0.00003 to 0.0004 inch and the densities range from 3 to 26 pounds per square
foot. The thermal conductivity for one of the fibrous quartz insulations is shown in
Figure 7 as a function of temperature and altitude.
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Figure 6. Effect of Temperature and Altitude on Thermal Conductivity of Powdered Mixture
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1.2.3.3 Cooling Systems

Three cooling system concepts appear feasible for use in removing the aerodynamic
heat that is transmitted through the insulation. These systems are defined in the
succeeding paragraphs.

1.2.3.3.1 Open-Cycle Systems

The coolant of the open-cycle systems (a 99-percent water, 1-percent gel mixture) is
contained by a sponge material within passages that are attached to a thin aluminum
sheet. The assembled panels are mounted to the pilot and payload compartments; they
enclose areas containing equipment that cannot tolerate exposure to the hot surface
panels. When transmitted through the protective insulation, heat is absorbed by vaporizing
the coolant, The steam generated is transported to an overboard dump where it is
exhausted through a control valve, which functions primarily to regulate the coolant
temperature. Another advantage of a pressurized system is the elimination of coolant
vaporization during orbit since the vapor pressure of the gel would exceed the pressure
within the passages. A schematic of this system is shown in Figure 8.

INSULATION AND
RETAINER

PANEL

VAPOR VENT INSUL ATION
VALVE

*COMPARTMENT
WALL

Figure 8. Open Coolant System Integrated with Protection System

1.2.3.3.2 Closed-Cycle Systems

The compartment shell or primary structure of the closed-cycle systems, constructed
from an aluminum alloy, contains an integral tube circuit that forms a closed transport
loop through which a coolant is circulated. During re-entry, heat transmitted through
the insulation is absorbed by the circulating fluid and transferred in a remote heat
exchanger to an expendable heat sink that uses its heat of vaporization in the process.
The rate of flow of the expendable coolant through the heat exchanger regulates the
temperature in the closed loop. Figure 9 shows a schematic of a closed-cycle system.

11
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Figure 9. Closed-Cycle Cooling System

1.2.3.3.3 Combined Open-Cycle and Closed-Cycle Systems

The combined open-cycle and closed-cycle systems can be used advantageously to
enhance the overall configuration of the system. In general, the closed-cycle systems
can be adapted readily to large surface areas and thermally complex sections where
local conductance values vary significantly. Areas where appreciable heat conduction
results from structural framework that support hatches and windshields, and members
that extend between the outer heat shields and the cooled inner structure or compartment
walls are examples of this case. On the other hand, remote equipment and movable
surfaces might be more effectively cooled by an open system to eliminate long or
flexible connections, which would be more susceptible to fatigue.

12
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1.3 System Optimization

In the final analysis, many design parameters might influence optimization procedures.
These include allowable material temperatures, reliability considerations, volume limita-
tions, flexibility and fabrication requirements of the system, systems that are readily
accessible for servicing, and ease of adaptationto straightforward preflight checkout
procedures. In addition, the thermal protection system must be able to survive environ-
ments that are associated with ground support as well as all phases of an orbital mission.

The integration of the components of thermal protection systems into a system of
minimum weight can be performed after the type of insulation and cooling system have
been selected. Essentially, the optimization process involves a tradeoff between insula-
tion and coolant requirements to arrive at a combination of minimum weight. The
following sections present the analytical techniques associated with this process.

13
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2.0 SUMMARY

A thermal analysis and an analytical procedure of practical significance are presented
and applied to establish meaningful design parameters for thermally protected glide
vehicles that re-enter the atmosphere. With only slight modification, as dictated by
particular boundary conditions, the techniques developed may be useful for obtaining
solutions to a number of problems in the field of heat transfer where temperatures are
functions of spatial and time coordinates.

The general differential heat conduction or diffusion equation, extended to include
temperature-dependent thermal properties, was transformed into an approximate
algebraic expression by employing the calculus of finite differences. The difference
terms replacing the partial derivatives were the first approximations of the derivatives
of polynomials, obtained from the Gregory-Newton and Stirling interpolation formulas,
which represented the temperature at any point in the coordinate system.

Three realistic thermal protection systems were analyzed by the application of this
general difference equation together with the appropriate boundary conditions. Three
configurations were selected: an insulated and cooled structure, an insulated and cooled
compartment combined with a ‘‘hot’’ structure, and an internally radiation-cooled
structure. The boundary value problems in each case were reduced to expressions that
enabled a prediction of the temperature history throughout the configuration, instantaneous
rates of heat transfer to the cooling system, as well as the total coolant requirements that
were based on the amount of heat absorbed during a typical descent trajectory.

The equations resulting from the anaiysis of the insulated and cooled structure were
programmed on an IBM 7090 computer and numerical solutions were obtained, Tempera-
ture surveys for this case are presented in the results and the significance of optimizing
the design is duscussed.

14
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3.0 THERMAL ANALYSIS

3.1 Problem Statement

Optimization procedures establish, by an orderly analytical process, the insulation and
cooling requirements for thermal protection systems of minimum weight. These require-
ments are set forth by arranging the problem solutions in an expression for the total
system weight as a function of insulation thickness and then by selecting the thickness,
which corresponds to the minimum combined weights. The techniques involved in
generating sufficient data to adequately define this function will be presented in this
section.

The total weight of the system can be divided into two basic elements; the weight of the
insulation that is assumed as an input to the problem and the coolant weight that is
expended as a result of absorbing heat, which is conducted through the insulation from
the surface of the vehicle, The latter quantity can be determined from the solution of the

.boundary value problem for conditions that define the time-dependent flow of heat
through the insulation. One condition on U, which is a familiar parabolic partial differential
equation, can be written in the form

Up = 6 (U) (1)

where the right-hand term is a second order elliptic partial differential operator with
either one, two, or three independent space variables. Now if R is the region of the space
variable or variables bounded by D, then the values of U in R can be determined for all

t >ty after U in R is specified for t = ty and the values of U on D are known for all t >t,.

Since obtaining solutions to this problem by analytical methods is not practical, an
approximate numerical method can be used which replaces the partial differential equation
by a partial difference equation. This method, described here, is the method of finite
differences.

A grid network of regularly spaced straight lines, each parallel to one of the coordinate
axis, is superimposed over the region R. In addition, a time increment, p, is introduced,
which essentially represents a new dimension to the mesh, Now instead of solving a
complex differential equation for all values in a continuous region, only approximate
values of the solution must be ohtained at the mesh points that are formed by the
intersections of the network lines with each other and with the boundary of the
region.

The method of obtaining the difference equation for each of the interior mesh points
involves a transformation of the differential equation by replacing the partial derivatives
with corresponding difference quotients. As a result, the problem can be formulated
into a series of linear algebraic equations where each defines the conditions at a
particular interior mesh point, In the case of the boundary value problems that are
considered in the following sections, the solutions will involve a system of n linear
algebraic equations with n unknowns, where n is the number of interior mesh points.

All values pertaining to the boundary mesh points will be prescribed.

15
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Since the initial values for U for the interior points are known for t = tg, the solutions
for the first set of n algebraic equations will apply for t = to + p. Successive iterations
will result in approximate numerical values of U for ail mesh points in R when t=ty,+1p,
to +2p,...,to+mp where m is the total number of time increments,

An explicit procedure for solving boundary value problems of the type containing
Equation (1) is referred to as the forward difference method. Each value of U can be
determined for any value of t if all values for U at the preceding t are known, Unfortunately,
the forward difference method may be numerically unstable unless restrictive conditions
are imposed upon a parameter for selecting p. As a result, the maximum value for p is
limited; nevertheless, for most cases p must be chosen so small relative to the space size . .-
of the mesh that the computational labor involved prohibits solutions except where high-
speed digital computers are available.

Once the values of U have been established for all mesh points within R and for t=t5+ 1p,
to+2p,...,tg+mp, then the rate of heat flow, q, across the boundary can be calculated.
The total heat removed, Q, can be determined by a summation of q.

mp 2 4 (2)
I

From this term, the total weight of the coolant expended is determined by dividing by
the enthalpy that is required to convert the liquid coolant to a gaseous state. This process
can then be repeated for a number of initial insulation thicknesses to arrive at some
relationship between this independent variable and the coolant requirements.

The introduction and availability of high-speed computational machines have made
practical the solution of this problem by numerical methods. Unfortunately, considerable
effort is involved in formulating the problem into computer language and preparing the
machine program. As a result, the time lag between the start and solution of a problem
might be significant but of less relative importance where a great many cases are to be
solved. One valuable aid for expediting problem processing is an adaptation of a concise
format for presenting solution procedures. Section 4 contains the problem statement in a
recommended form that can be understood by engineers as well as programmers.

3.2 General Assumptions

Before presenting a solution to the time-dependent heat transfer or diffusion equation,
certain assumptions suggested by the physical nature of the problem should be reviewed.
These involve the selection of significant spatial variables, the manner of analytically
expressing material properties, and general definitions pertaining to boundary conditions.

The first problem can be resolved by determining the relative significance of heat
transfer with respect to the coordinate system shown in Figure 10. These coordinates
pass through an element of insulation in an area of the vehicle where the orientation of
isotherms results in maximum heat-flow rates. Since the thermal conductivity of the
material is identical in all three directions, then only the ratio of temperature gradients
in these directions need be compared.

Temperature variations with distance can be expected to reach a maximum in a section
Aux)By

directly behind the leading edge of the wing where the value for Bu(y) bx

= 50, or only

16
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Figure 10. Element of Insulation

2 percent of the heat conducted depthwise through the structure will be transmitted in a
chordwise direction. In Section 5, you will note that the total weight of the system will
not be affected by this small percentage. The heat transferred in a spanwise direction is
still smaller; in fact, it can be considered as nil.

Another section of the vehicle that was chosen for evaluating the meriis of a three-
dimensional heat-transfer analysis was the upper, rear portion of the fuselage where
the surface temperatures during the period of maximum re-entry heating are relatively
Aux)h z
Au(z) & x
heat transfer far exceeds the circumferential conduction; hence, the latter could be
neglected. The same approach can be applied to justify neglecting heat that is transferred
axially along the fuselage.

low. In this area, the value of the ratio = 200, which indicates that the radial

Although we have shown that analytical solutions in the practical sense will be
sufficiently accurate if, in general, only one-dimensional heat transfer is assumed, a
numerical approximation of the diffusion equation in three spatial variables will be
derived, since it provides a valuable tool for evaluating a number of engineering
problems in heat transfer. The matter of transforming the derivation to a one-dimensional
equation is accomplished merely by retaining only those terms applicable to the particular
problem in question,

During re-entry, the temperatures of the external heat shields may be related in some
manner to mission time, Although no exact mathematical formulation is possible for this
function, it may best be approximated by a series of points; its neighborhood can be
defined by linear interpolation. This assumption is not as wieldy as it may appear, since
digital computer techniques can readily handle this procedure.

Another general assumption is associated with the mathematical treatment of material
thermal properties; namely, surface emissivity, thermal conductivity, and specific heat.

17
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The thermal emissivity of the material surfaces is assumed to be independent of
temperature. This assumption is valid for two reasons. First, the emissivity of surfaces
experiencing an appreciable temperature variation (in the order of 2000°F) during re-entry
are essentially grey bodies. Secondly, all nongrey surfaces experience only a small change
in temperature, usually less than 100°F.

Thermal conductivity and specific heat, on the other hand, are definitely functions of
temperature. If these properties are inspected for a number of applicable materials, we
see that thermal conductivity can be reasonably defined by a quadratic term while
specific heat can be approximated by a linear function. This approximation results in
expressions that are easily operated upon and. in addition, provides a convenient means
of reducing the degree of the equations by setting coefficient equal to zero. For example,
if the thermal conductivity is best represented by a linear function, a second degree polynomial
canbe replaced by a linear function merely by equating the coefficient of the squared termto
zero. Assumptions concerning the selection of a value for the radiation form or geometry factor
and a decisiontoomit air convection terms have been made inthe interest of generalizing
solutions. Since both of these terms are related to specific locations of vehicle surfaces,
including particular design considerations would be necessary for all cross-sectional areas of
a thermally protected airframe.

Many other significant assumptions could be discussed; however, they are more closely
associated with particular boundary-value problems and would not apply in general, These
assumptions will be reserved for Section 3.4 where particular boundary value problems
will be analyzed.

3.3 Solution of the Diffusion Equation

The partial differential equation describing the time-dependent flow of heat through the
thermal protection system is derived in this section; it is then transformed into an
algebraic expression by the application of the calculus of finite differences. The final
form is one that expresses the temperature of a finite element at time t + 1, in terms of
the temperatiire of elements at time t. By successive application of this equation together
with appropriate boundary and initial conditions, the temperature history through the
insulation may be predicted; thereby, the rate of heat transfer from the nth element is
established. This latter quantity establishes the cooling weight of the system for any
given amount of applied insulation.

Note Figure 10. The heat entering face 1x can be written as

du ’
dQy = dydz k(U)a_dx— dt (3)

Now the heat leaving face 2x at x + dx can be determined by letting

du
F(x,u)=k(u)-57 (4)

By changing x to x + dx, F(x,u) becomes F(x + dx,u). This latter term may be expended
by using a Taylor series, thus

oF . du 9 du
dx dx_k(“dx +6x k(U)ax ax (5)

F(x+dx,u) = F(x,u) +

18
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Therefore, the heat leaving face 2x can be expressed as

du 0 du
d°x+dx = —dydz [k (u) ax + x- k(u)Tx—-dx] dt (6)
This same approach would apply to adjacent y and z faces. That is
4@ = — dxdz k(u) 2% gt
y dy ’ %)
du %) du
d0y+dy=—dxdy[k(u)—ay— +6y k(u) 2y dy]dt (8)
and
= dy k) 2 g1
sz = —~dxdy u 22 R 9)
du 9 du
sz+dz=—dxdy [k(u) 32 + 32 k(u) 25 dz]dt (10)

Since the net heat flow into an element must be equal to the heat stored within the element,

du
d0x+ de + sz = d°x+dz +doy+d, + doz+dz+pcpdxdydzw dt . (11)

When the dQ terms are replaced by the expressions Equations (3), (6), (7), (8), (9), and
(10), all terms to the left in Equation (11) are cancelled by the first terms of the

first three expressions on the right. The result is the following three-dimensional
conduction equation:

2 du 9 du -] du du
k = _ -
3x k(U)ax + oF k{u) 2y + 3. (u) 3z P Cp a1 (12)

Equation (11) can be expanded to

) du %y 3 du %y
k (u) + k{u) + k(u) k (u) +
dx “ dx ! Ix? dy ! dy 4 dy?
) du 9% u du
—_ k (uw) 4+ k(u) = c
dz ¢ dz ¢ dz? P Cp ot (13)

Equation (13) can now be transformed into an algebraic expression by substituting
appropriate finite difference relationships for the partial derivatives. These approxi-
mations, derived from interpolation formulas, are listed as follows:

g: =2l_h[U(i+l.x.')"“(i""‘")] ' (9
2 2

(g‘: i 4Ihz ["“"’""')_u“_l'x'”] ’ e

%y { . i

ax2 :_h"[u(|+i.x.t)-ZU('r""'““""‘")]' (16)
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9

= — [utiten—utin]

2 - (17)
a

T [u(i+|.x.t)—u(!,')] (18)

Although these expressions have been written for the x direction only, those for the y and
z spatial variables are similar. In addition, a square element was selected to eliminate
area terms from the final equations. The derivation of these expressions is included in

Appendix I,

Now the thermal conductivity of the material can be expressed as a function of tempera-
ture by the polynomial

2
k(u) :Ao+ A.u -+ Azu (19)
and the specific heat by
cp(u) =Bg+ B,u. (20)

Taking the derivative of Equation (19) and dividing by 3 x gives

Ik(u)
L Ny A
9 x (A| + 2 Zu ) dx (21)
Substituting Equation (21) into Equation (13) results in the expression
A, +2A u(au)z-!-A +A,u +Azuz(ﬁz-)+A +
J £ dx o dx U
du v 2 2y du
28, ( 5 Y+ A+ A + A Oyz)+ A, +2A2u(az ) +
2 % _ du
Ag + A, u + A,u (azz) =p (B +8, u) — 22)
Replacing the derivatives with the appropriate finite difference relationships gives
| . 2, - . R 2,. _
Y [a,+28, uti,n] {{o2G+nx =20 G, -1, 0+ udti-lx,n ]+
[v2G+ny, =20t iy, truCicLy,n+d%G=1,y,0 |+
2,. a a 2,.
[vBCitnz -2tz 00 ti-zn +uXi-t, 2,0 ]} +
h'z [ag+a,uti, 1+a,u? (0] {{ua+nan—2utin +uti-Lx0 ]+
[u(i+|,y,t)—2u(i,t)+u(i—l,y,t)]+[u(i+|,Z,')-2u(i,’)+u(i—l,z,t)]}=
P . ) )
—_ B, + B (i,t) J1+ 1) - st
" [0 yulti ][u(l y—ul(i )] (23)
20
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Finally, solving for u(i,t+1) gives

[
uli,t+1)= uli,t)+ A, + A iyt
20phz [BO+B|““'”T { i+t 2A8,uli,t)

[WBCitna =20+, ot uli=lox, 0+ o=t + u(i+t,y, 1) -

2ui+ Ly, uli-hy, ) +uli=l,y, )+ w2 (i+1,2,0)-2u (i+l,z,t)uli-1,z,0)+
wBli-tzn ] +a[agtau i+ a,uii,n]
[u(i+l,x,t)+u(i—l,x,t)+u(i+l,y,t)+u(i—l,y,t)+

u(i-H,z,t)+u(i—l,z,')—6““"’]} (24)

For the case of one-dimensional heat flow, all terms associated with y and z directions
will drop out and Equation (24) reduces to

P
20pn® [8,+ 8, u (i, 0 ]

u (it + 1) =uli,t)+

{a+ 28,00, [u2ti+,n-2u+, 0 0=, 0+ v2(i-1,0) ] +
a[ap+a, uti,nn+au?i,n] [utitnn-2zuti,n+uci-n,n ]} (25)
This is an expression for the temperature of an element of insulation of length h and of

unit area at time t + 1, in terms of temperature-dependent thermal properties and the
temperature of the same elements at time t.

3.4 Boundary Value Problems

A number of typical boundary value problems that were encountered during the formula-
tion of optimization procedures for thermal protection systems are presented in this
section, Each problem is associated with some definite combinations of thermal insula-
tion and cooling system or thermal insulation without a cooling system, which are
representative of schemes evolving from current technological developments. The
following types will be analyzed in the following sections: insulated and cooled
structure, insulated and cooled compartments, and insulated structure.

3.4.1 Insulated and Cooled Structure

A cross section through the wall of an insulated and cooled structure is shown in
Figure 11. Let s represent the external surface of the radiation shields, o the interface
between the heat shield and thermal insulation, r the inboard surface of the insulation,
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c the cooled structure, and g the compartment atmosphere and insulation interface.

HEAT SHIELD

(EEEENEEEEEEEEEEREE .

INSULATION

— PRIMARY  —— STRUCTURE —
) INSUL AT ION )
COMPARTMENT ATMOSPHERE

Figure 11. Insulated and Cooled Structure

The conditions of the boundary value problem are stated as follows:

Considering the outer layer of insulation (o to r) gives

U'(x,l) =G (U) O<x<r,t >0, (26)
Cc
b L

Uy (x,t) = uis,t) - ulo,t) x=0,t> 0 . 27

x k(u)[ ] @7
Cq +Cy

Uy (x,t) = ———1]ul(r,t)— u (c) x=r,t >0 3

* K (u) [ ] (28)

and
U (x,0) = constant O<x<r,t z0-. (29)

A similar set of conditions applies to insulation contained by the cooled structural
shell:

Up (x,t) = G{u) c<x<g,t >0, (30)
Ux(x,t)=M[u(1,t)-u(c)] x=¢c,t>0 (31)
k{u)
- _Cn -
Uy, (x,t) = ) [u(mt)—u(v)] x =g,t>0 , (32)
U (x,0) = constant c <x<g,t =0. (33)

The problem statement can now be completed by stating the remaining relationships that
affect a solution thus

U (s,t)

F(r) x=s,1t

v
o

(34)

U (¢c,t) = constant x=¢,t

v
o

(35)
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U(v,t) = constant x=zv,t2 O (36)

The preceding conditions can now be transformed into algebraic expressions by replacing
the derivatives with the corresponding finite difference relationships listed in Section 3.3,
Equations (14) through (18).

The transformation of the identical Equations (26) and (30) was discussed in Section 3.3.

As a result, Equation (25) was derived. Similar operations on Equation (27) will now be
performed:

k(u)

z C 1] - t
o o b —wen] (37)

where Cp, is the conductance of the radiation heat shield. Referring to Figure 12,

OUTER FACE
Tl A e
C S core T s

INNER FACE

Figure 12, Heat Shield

Cp,=Cq+Cq +C, (38)

states that the overall conductance of a honeycomb sandwich panel is the sum of the
conductance through the metal core, Cq4, and the conductances of the air space Ca + Cr'
Now

kg (u) Sy kg (u)Sq .
Cq =———, Cg=—"—F—2, C, = C/(u)Sq 39
£, £, (39)

But Cp, can be approximated by a quadratic
Cp, = Do+ D, u +D,u (40)

completing the transformation

] A Ap 2
L {agr 5 [utotensuorien]+ S [u2tor+ 4

2u(o,t+N ulatl, t+0) + (ot t+1)]}[uto t+n1-vto+1,140)]=

D D
=1 D2 2
D°+ 2 [u(s,t+l)+u(o,t+l)]+ 4 [u (s,t+1) +

2uls,t4ulo,t+ N+ uZ(o,1+0)] [u (s 041~ ute, t+n] (41
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Expanding, collecting, and transposing terms, Equation (41) becomes

(Ag40,h) u® (o, 1411424 +A,u o+ 1, 141)+2hD, +hD,u(s, 1+ 1)]u?o 141+
[4nDo-nD,u? (s, 14118020 + 1,040+ anp] uto, te11=[anguio+ 1,141 +

2A,u2(0+ 1,1+ 1)+ A,ud (0+1,t+1)+ GhDou (s, 1+ 1) +2h D, u?(st+1) +
(42)

hDpu(s,t+11] = 0-
The term u(s,t+1)=F(t) is given and u(o+1,t+1) can be determined from Equation (25);

therefore, u(o,t+1) can be found by solving Equation (42),

The transformation of Equation (28) is accomplished in a similar fashion

(47)

2
k (u) t I =C°+C' [U(',')—U(C)] (43)
x X=r
where
ko(u, i 2
c. = = (Ag, + Ay, up +A5,u,0) 44
G Lo Ly go ar °m az'm (44)
where k, is the thermal conductivity of air.
In Equation. (44),
o o Ul tHDI+ ule)
m - 2 (45)
Alsc,
4 4
[459.69+u(r,t+|)] -[459.69 +uter] \
[ = o F_. F =
r St u(r,t+1i) —uf{c) (£59)
Expanding Equation (46)
o Fe F
c = € 9 [u"(r,t+l)+l838 8ud(r,t+11+4
u(r,t+1) —-u(c)
1267.9 x 10> u?(r,t+ 1) +3885.6 X 10° u(r ,t+1)—
ud(c) —1838.8 ud(c) —1267.9 x10® u?(c) - 3885 sxlo“u(c)]

Substituting Equations (44), (45), and (47) into Equation (43) together with the finite
difference expression for the partial derivative yields the following:
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:.—{A°+A' [ u(r.t+l2)+u(c) ] +Ag[ u(r.t+l): u (¢) ]2 }

u (r,+ +1 )+ ulc) ]+

[u(r,l‘+|)"ll(°,]={Aoo+A0l [ 2

A”[ u(r.c+zn+u(c) ]' } [ u(r.c+ro—u(c)

1838.8 O F Fy u® (r,14+1) +1267.9X10° T Fg Fg u® (r,t 411+

]+ oF Fgustnt4n s

3885.6 X 10°0 F F, ulr,t +1)-0 Fg Fq u*(c) - 1838 8 aF F,u® (c) -
1267.9 % 10° o F, Fy u¥(c) — 3885.6 X10° o F¢ Fy ulc) (48)
Equation (48) reduces to

hA
4hoF Foul(r, 1+ D+ (T" +7355.2 ho F Fy A, JuP(r, t41) +

hA hA
[2 B 4 92 (c) +5071.6 X 10%h o Fe Fy —24, —A, ule) Jul(r, 1+ +
.‘G lo
4hAqo 2 s hAgs
[Z522 + a,u%c) +15542x10° ho F Fq — 44, - — ()] uirt+ 0+
a a

4hA 2hA
2 s ao ai 2

4A u(c)+2A (c) +A_ u"{c) - ~————— ulc) - u®l{c) —

[ oY W 2 a Za

hA

92 ¥ (c)-4ho F Fq ud(c) — 73552 ho F  Fy u®(c) —
a

5071.6 X 10° ho F F, u¥(c) — 15542 x10° ho F, F, u(c)] = 0 (49)

Again, this equation can be solved for u(r,t +1), since all other terms are known or can
be determined by previously established relationships:

We assumed by Equation (35) that the circulating coolant media maintains a constant
structural temperature; hence, the heat capacity of these elements does not affect the
temperature gradient, Furthermore, the thermal conductivity of common materials used
in this area are very high as compared with those of thermal insulations and, when
coupled with typically thin sections, the temperature drop across the member is
negligible.

Continuing with the solution, the temperature of internal elements on the inboard side
of the structure can be determined by Equation (30). Again, the transformed relationship
is identical to Equation(25).

Now Equation (31) states that the heat transferred from r to ¢ is equal to the heat
absorbed by the first element of insulation adjacent to c. A solution in this case was
previously obtained (Equation (49)), since the temperature of c is constant; therefore,
u(c) is independent of conditions beyond that station.

25




ASD-TDR-62-625

The relationship remaining to be solved is Equation (32) thus

du

k
(v ox

= Cp [u*(g,t)-—u(v)] (50)
X= 9
Again, the partial derivative is transformed to the difference relationship

| A A
+ {ao+ G [ute-tr+n+ w4 ]+ 22 [ute-1, 1404

2u(g-Lt+ 1) ulg,t+ 1) +u? (g, 1411] } [utg-t,t+n1-utg, 1401 ]

cp [utat—+11 =] (1)

Expanding, grouping terms, and transposing, Equation (51) becomes

Ayu(g. 141 +[24, - A0 tg=1, 1+ 0] u? (g, 1+ 1) +[a85=4, uB(g-1,t+ 1) +anc ulg 1 +0-

[4A°u(9-l,t +1)+ 2A|uz(g-l,t+l)+Azu3 (g-1,t +1 )+4hCh u(v) ] =0 (52)

The solution of Equation (52) for u(g,t + 1) completes the process of determining the
temperature distribution through the thermal protection system at time t+1. A repeti-
tion of the process results in the temperature distribution at time t +2. By this technique,
the temperature distribution for all t’s may be established.

An internal cooling system maintains u(v) constant by circulating the compartment
atmosphere across the face of the insulation. A similar condition existed at c where a
fluid is circulated through passages that are attached to the structure. Determining the
weights of coolant in each case requires that the rates of heat removal at ¢ and v must
first be calculated.

At the structure, c,

qlc,t+l) = C4q +C, [u(r.t+l)—u(c)] (53)

since u(c) is a constant. Equation (53) simply states that the rate of heat transfer to the
coolant at time t +1 equals the rate of heat transfer across the air gap at time t+1. The
total weight of coolant expended during re-entry is then

m
mp
w, = z aqle, 1)
c AR
hegg (54)
Now"the rate of heat transfer to the compartment

alv,t+1) = C, [u(g.'+l)-—u(v)]

and the weight of expended coolant

mp

W, =
hy

. 2 qlv,t), (55)
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The amount of insulation in each case, which results in a minimum combined
insulation and coolant weight, can be determined by repeating the solution for several
insulation thicknesses; then the combined weights can be compared with the insulation
thickness.

3.4.2 Insulated and Cooled Compartment

A typical section of this construction, consisting of an insulated radiation shield
exposed to the airstream and an insulated cooling system attached to the compartment
wall, is shown in Figure 13. The various surfaces and interfaces are identified as
follows:

a. At x = s, the exterior surface of the radiation shield is supported from a stiffened
panel, f, by refractory metal members.

b. At x = 0, a retaining sheet confines thermal insulation in an area that is adjacent
ro the cooling system, r. This assembly together with another layer of insulation is
supported from the compartment wall, c.

c. The compartment atmosphere is located at x=v.

The boundary value problems associated with this case can now be specified.

HEAT SHIELD
0 = xX=s
@ INSULATION
f
(@ STRUCTURE
®
C INSULATION °
O= COOLING SYSTEM =—=—x—] v
® !
@._._;] COMPARTMENT ATMOSPHERE —

Figure 13. Hot Structure - Insulated and Cooled Compartment

Conditions tor the insulated radiation shield are as follows:

Uy (x,t) G (u) s< x<f ,t> 0 , (56)

U (s,t)

F (1) x=s, tz20, (57)
!
Uy (x,1) =H—u;{(C°+C,)[u(f.t)-u(o,')]-

s [utsir—uer, )]} x=¢f, t>0, (58)
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U(x,0) = constant s<x<f,t=0. (59)

For the insulation between x=0 and x=r,

Uy (x,t) =G (v} o<x<r, t>0, (60)
|

U tx, 1= = {(cg 4, [utt - o]} x=o, tso, (61)

v (x,t):—'—[q(r)+q(r)+q (r)] x=r, t>0, 62

x k(u) s d o (62)

U (x,0) = constant 0< x<r,tz0, (63)

Finally, for the remaining section of insulation between x=r and x=c¢

Ug (x, 1) = G{u) r<x <c ,t>o, (64)
]
U, (x,t) =;(—u)[qi(r)—(q’(r)+qd(r))] x=r, t>o0 , (65)
2 - =
Uglat) = = [o,tcr+ ¢, (utc,11-utn)] x=c, t>o, (66)
U(x,0) =constant r< x <c, t=o (67)

Relationships, in addition to those just listed, which will be required for a solution, are
as follows:

U (r,t) =F,(t) x =r, t2o, (68)
hfg (r) =F3(1) x=r, t> o, (69)
U (v,t) = constant x=v, t2 o. (70)

Following the procedure applied in Section 3.4.1, the partial derivatives of the
boundary condition are transformed to finite difference expressions. Equations (56), (60),
and (64) reduce, as before, to Equation (25),

Since the temperatures of x=s for all t’s are given, and the temperature of internal
elements of insulation for the first-time step, t +1, can be determined from the solution
of Equations (56) and (60), then the next operation should produce the temperatures at
x=f and x=o0 for this same time step. Now the rate of heat transfer from the insulation
element at x=f must be equal to the rate of heat transfer to the insulation element at x=0
if the material in the region f < X < o has zero heart capacity. This being the case for air,
the two applicable Equations (58) and (61) at this location can be written as follows:

K () +c, [uts,n—uenn]=ic e [utnn-ue.n], (7

* x=f
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k(u)%— =G +¢,) [utt,1) - uie,] . 72)
xX=0
By solving these two expressions simultaneously, u(f,t +1) and u(o,t+1) may be
determined. To simplify the algebra, we will formulate coefficients from thermal

conductance terms.

First, the thermal conductivity of the material used for supports between x=s and x=f
kg(u) = A+ AL u + A, u,?, (73)

- uls,t+ 1)+ u(f,1)
Um = 2 . (74)

Further, the thermal conductance for the support

kg (u) S
Cq = +. (75)

Combining Equations (73) through (75) results in the following expression for Cg:

s
C, = 3
s al,

[4As°+2A'. uls,t+1)+ 245 vt 1)+ Ay, ul (s, t+1) +

2z
ZA'zu(s,t+l) u(f,l)-l-A‘zu (¢,1) ] (76)
This represents the expression for the first coefficient C; = Cg.

Now the thermal conductance for the element of insulation at x = f is derived by
combining the equation

k(u) =A, +A u, +A, umz (77)

where

_ u(f-1,t4+1) +u(f, t)
Ym 2 (78)

and h to obtain

A
2. Bttt 1)+

| A A
c, =—h—[A°+-—2—- Ut 4+ =t 4+

Az
2

For this case, let the second coefficient

_ A, 2
wCE=La4) ulf 1) + =2 (t .0 ] (79)

2 = MCi (80)
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The third coefficient is equated to the thermal conductance of the air space established
by Equation (44), in which Up, is now

_ ul(f,t)+u{o,t)
Ym = 2 ) (81)

Therefore,

!
aL,

Co =Cy = [4ag0+ 28, ult,1) +285,ul0,1) + A, u? (f,1) +

2Agu(f,t) ulo,t) + Ag, ul lo,1). (82)

Considering the relationship for the equivalent thermal conductance for air-gap radia-
tion, an expression similar to Equation (47) is obtained. Rewriting Equation (47) and
inserting the proper subscripts gives

Ca ]

F F [u‘(f.t)+

C = o
r o u(f,t+D)-u (o, +1) u(f,r+l)—u(o,1+l){ € a

1838.8u3(f,1)+ 1267.9x10° u® (f,1) + 3885.6 x10® u(f,1) —

u*(o,1)—- 1838.8u3(0,t) —1267.9 X 10> u®(0,1)- 3885.6 x 10° u(o,n]} ©(83)

Equation (83) shows that C4 is equal to the term enclosed by the backets.

The final coefficient is derived from the thermal conductance term for the element of
insulation at x = o by a manner similar to that utilized in establishing Equations (77)
through (80) where Um is now

u{o,t)+u(o+l,t+1)

Ym = 2 . (84)
Now
— c A A A
L] [ 1 ) 2 2
C; = — =T[A°+ S wlou )+ ulo 41, t++ =2 uo ) +
A A,
CL w0, u okl )+ SR o2 (041, t+1)] (85)

Recalling the simultaneous Equations (71) and (72), the partial derivatives may be
replaced by finite terms and substituting the coefficients for the conductance and thermal
conductivity results in the following:

-—ﬁi- [uct=t,ren -t 4n] +c, [usaen —ut+n] -

cyfutrt4 —ute, 1+ )]+, (86)

Cs

cs[utt,r +n-utot4n ] +c, - [uto,t+n —uto+ 1,1 +11]

(87)
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Rearranging Equations (85) and (86) by transposing terms gives

(c, +cy+ =2 ) [utrir+n] —cyuton+i =

¢
—hz-u(f—l,f+l)+cl uis,t+1)—-c¢c, , (88)
c C

Cyulfirdn—(cgt =) ulo,t41) =-Cy = == ulo+1,1). (89)

The temperature u(f,t +1) and u(o,t +1) can now be determined from Equations (88) and
(89).

The next step involves determining the temperature of internal elements of insulation
forr<x<cattimet +1, Following the procedure employed for each of the preceding
insulation thicknesses, these temperatures are dztermined from the expanded form of
Equation (64).

When conditions at x=r are explored, several possibilities may be encountered. These
involve a knowledge of the rates of heat transfer about and at the junction r as specified by
boundary conditions in Equations (62) and (65). Recalling that x = r is the location of the
cooling system implies that a heat sink exists at this point and the rate of heat dissipated
by the coolant is denoted by q4. Furthermore, the materials used in the construction of
the cooling system can store heat at a rate equal to gg. Now the heat involved in both
mechanisms must be the balance of that transferred to the junction through the insulation
at the rate q; and the rate of heat transfer from the junction gy so that the expressions
for each can be written and acted upon accordingly, thus

e L {a,+ 3 [vor-ttntutn+n] +

Ju
q. = k(u) | 2

i dx

X —F

Az

e [oBtr-tt+ 0 +2utr=1,040 v (r,t4D) +uz(r.t+l)]}

[utr=n140) —utr, 1+ 1)] (90)

or
a; =4IT{4A°u(r L+ D -aA ulr,t+D+24,uf (r-l1+ D - 24,8 (14 ) +
Ayud(r=1,0+1)+ Azuz(r~l,t+|)u(r,H-I)—Azu(r-l,'-l-I)uz(r,Q+|)-Azuz(r,'+l)}. (91)
In a similar manner
du

ox

X—=4r

= = - 2 -
q, = k() == {aag it 40— aagu (et 424,000 40

zA,uz(r+|.c+|)+Azu’(r,t+|)+Azuz(r,'+|) slr+1,t+1)—

Agulrt+1) u2(r+, 1+1)=A 0 (r +1,0+1) } (92)
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The heat stored

qsz""cpr'e" at )

Py cpslasa)[u(r,t+|)-u(r,1)] (93)

The subscripts of the p, Cps £ and S terms refer to particular components of the cooling
system.,

Now the three conditions that apply at the junction x = r are as follows:

a. q;=q, *q then qy = 0 (94)

b. q;>q +q,, then gq, -(q +q.)=qy (99)
W G 9 <4, *qq implies that u(r,t +1), although given, is incorrect since it leads to an
¢ impossibiﬁty equation,”’ The solution is to determine a new u(r,t+1) that will satisfy the
equality qj = q; + qg. One must understand that qg = O for this condition.

Combining Equations (91), (92), and (93) and solving for u(r,t+1) gives

A,

AZ 2
u3(r,t+l)+{-zr[u(r—l.f+l)+u(r+l,t+l)]} W2rt 4+ 1) +

5 24, A, A, ,

{[T (P|c9,1| sl+chlezsz+chpsjass)]+ ot T R vilemhrtn -
A 3 A A

:hi u (r+|,t+l)}u(r,t+l) = h° u(r—l,1+l)+-2—'h W (r=i,t+1)+

Bz 34 Do ulr+1, t+1) + A, ulr+0,t+0+

4an C h 0 2h C

Aa 5
T u(rH )+ [T(”ICP, L s, +pchz,ﬂz S, + £,Cp, Lys, N]utro- (96)

The only temperature remaining as an unknown is the temperature at x = ¢. The boundary
condition for this location is defined by Equation (66) or in slightly different terminology

du
6oy dx | = Fe Cpcjc

x=C

+Ch [u(c,t+l)—u(v)] (97)

t+1

Transforming the derivatives to finite difference terms and substituting in the expression
for

K(u) = Ag+ A, uy + Ayuy? (98)
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where

_ v(c-I1,t+1) 4+uic,t)
Um * 2 (99)

results in the following relationship

A A
A [A +—A—l-u(c—l.t+l)+ Loyl )+ —2 w2 (c-t,t+1)+
h o 2
Az Az 2 _
SR ule-ht+ Dule, )+ = u(c.t)][u(c-l.t+|)—u(c,t+l)] :
e Coc e | [ ]
= u(c,'+|)—u(c,')]+ch ul(lc,t+1)—ulv) (100)

To similify the algebra, let

| A A A
c, =~ [Ao+ F- vic-tt+ 0+ B ue, 0+ 52 K-, r+ )+
A, A, 2
ufc~=l,t+1) ulc,t) + p) u (cv')] (101)
and
c - spccpc zC .
s (102)
Then
|
u(c,r+l)=_-—-—[C|u(c—l,t+l)+Czu(c,t)'f-Chu(v)] (103)

C,+C,+C,

For this case, the weight of the coolant expended during re-entry is determined by
summing up the qq as determined by Equation (95),

m qir,t)
W, = mp Zli —hfgf (104)
The heat-transfer rate to.the compartment is
qlv,t) =Ch [u(c,t)—U(v)] (105)
and the weight of the coolant required at this location is
m q(v,t)
w, = mp ? : (106)

hfqv

The combination of insulation and coolant, which results in a minimum system weight,
is determined as described in Section 3.4.1.
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3.4.3 Insulated Structure

In some areas of re-entry glide vehicles such as wing surfaces where aerodynamic
heating is much more intense on the lower surface than on the upper and the hotter
sections internally view the colder ones, heat may be dissipated through the structure
by radiation and gas conduction. This principle is illustrated in Figure 14.

HEAT SHIELD

INSULATION

STRUCTURE

HEAT SHIELD —_y -

Figure 14. Hot Structure - Insulated

At x = 8, the bottom surface of the wing, exposed to the air stream, is insulated to
limit the temperature of the internal, load-carrying structure at a level where the
stiffness is not significantly affected. Heat absorbed by the surface at x = s is conducted
through the insulation and the heat shield support to the surface at x = f, From this
surface, it is transferred by radiation and gas conduction to the upper surface at x = o,
which is at a lower temperature because of the small heat input from the boundary
layer. The problem in this case involves the application of sufficient insulation to obtain
the desired temperature at x = f.

The conditions for the bbundary value problem may be stated as follows:
In the region of the insulation

Uy (x,t) G (u) s<x<f, t>o0, (107)

U, (x,1) {a,-aq, ) x=s, t>o0, (108)

k{u) 9
where the heat generated at the lower surface

ag = F(t) x = s,t>0, (109)

- _ -
U, (x,t) = m{(c“c, uttren—uto,r+1)]

cofutsten—uir 1+ 0] } x = f, 150, (110)

U(x,0) =constant s <x<o0, t=o. (111)
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The equation that applies at x = 0 is
(C°+C,)[u(f.t+l)—u(o,l+l)]=qr —'q—g x =0, t>0. (112)
Here Eg is the heat generated at the upper surface where
'E;—g = Folt) X=0,1>0- (113)

After first assuming some insulation thickness, the temperatures within the insulation
for time t + 1 are calculated after first transforming Equation (107) to the form in
Equation (25).

Now the temperature at x = s for time t + 1 can be determined from Equation (108)
where

K (u) = ag—d, (114)

X=S
The term q, is that heat radiated to space from the surface of the heat shield.
Neglecting the temperature of heat sink in space gives

T, coFe Fy [ut(s,141) +1838.8 03 (s,1+1)+1267.9 X107 u? (s, +1) +

38856 x 10% u(s, t+1) + 4465.4x|o’] (115)
and
k(u) = Ag+A, u, +A4, ”mz (116)
where
_uls, t+1)+u(s+1,1+1)
U = = : (117)
Equation (108) can be written as
2
—'!‘—{Ao-f— 2' [u(s,t+l)+u(s+l,t+l)]+% [uts,r+n+uts+1,t+n]" }
[u(s,:+|)—u(s+|,f+|)]=qg—ar=E F, [uttsre +1838.8u3 s 1410 4+
3 2 s 7
1267.9 x 10> u® (s, 1+1) + 3885.6 X10% uls,t+1) +4465.4 x 10" | (118)
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Rearranging terms

A A
oF, F, u‘(s,t+l)+[ﬁ +1838.8 o F, FO]us(s,t+l)+[ﬁ + G(s+l, t+1) =

—2
2h

Az 3 2 Ao Az 2
an u(s+it+1) + 126 7.9X107 o F, Fo]u (s,t+l)+[T+—ﬁ- uls+ 1, t+1)—

A
(s 41,1411+ 3885.6 X0 T F F, Juls,1+1)=q + (st 0+

2h
-—g—'h—uz(s+l,l+l)+%§-u3(s+l,l+l)-4465.4XIO7 (119)
Equation (119) can now be solved for u(s,t- 1).
Recognizing that Equation (110) is identical to Equation (58) then
(€, +Cyt <2) ult,t+10=Cyulo,t4D)= 2 u(F-1,141)+C uls,1+1) —Cq (120)
h
where
C) is given by Equation (76)
C2 is h times Equation (79)
Cg3 is given by Equation (82) and
Cy4 is specified by Equation (83).
Now Equation (112), by the same process, can be written as
Cyulf,t+) —Cyulo,t+l)=Cs-Tg - C, (121)
where
Cy=[ulont+n —uv,t4+1] T, = oF Fy [uto,1) +1838.8 uP (0,11 +
1267.9x10% u® (0,1) + 3885.6 X10° u(o,1) + 4465.4 xlo’]- (122)

Equations (120) and (121) are solved simultaneously for u(f,t * 1) and u(o,t+1).

If q and 'cjg are known for all t, then u(f) can be determined for all t. The process is

repeated until the desired u(f) maximum is obtained.
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4,0 DIGITAL COMPUTER SOLUTIONS

4.1 General

Before problems of the type outlined in Section 3.4 can be solved by digital computer
techniques, a concise mathematical statement must be formulated outlining all program
requirements, The purpose of this statement is to give the programmer an insight into the
type and scope of the problem to be solved by describing the algebraic relationships
approximating the set of differential equations.

The format for this section includes the construction and usefulness of networks,
required program inputs and outputs, the solution procedure, and a program flow chart.
The type analyzed in Section 3.4.2 will be used to illustrate the manner of presenting the
problem,

4.2 Mesh Networks

Once a configuration for the thermal protection system has been established, an array
of regularly spaced straight lines that are mutually perpendicular to the heat-flow path
are constructed within the boundaries starting from some arbitrary but fixed point u(xgp,
to), and positive number h, the mesh size for the variable x. In addition, a time mesh
size p is chosen and the mesh consisting of another set of parallel lines constructed
normal to the t coordinate. The method of selectinganhand pisdiscussed in Section 4.4.

The network for the problem in Section 3.4.2 consists of three mesh as shown in
Figure 15; one for each section of thermal insulation at s<x<f,o<x<r,andr<x <c
for t > 0. Interior mesh points are those lying within the boundary mesh points at t = o,
and x = s,f,0,r, and c.

Now the temperatures at all interior mesh points can be found by solving the appropriate
difference equation mntimes, where mnis merely the total number of interior mesh points.
Boundary mesh point temperatures are either given or canbe calculated from the relation-
ships which apply at a particular interface,

4.3 Program Input

This particular portion of the problem statement includes all known data that are
required to obtain a solution. Referring again to the case in Section 3.4.2, this informa-
tion can be listed as given in paragraphs 4.3.1 through 4.3.11. If sufficient data are
involved, presentation in tabular form might prove advantageous,

4.3.1 Surface Temperatures

The temperature of the surface is given as a function of time by listing a sufficient
number of temperatures, u(s), and related times, t, toadequately represent this function.
Since anexact, concise mathematical formulation is usually not possible, interpolation can
be employed to approximate values for u(s,t), whichlie between given points. Example:

Time increment, A t = 1 minute

Total flight time, ty = 200 minutes

Surface temperatures, u(s) = 80.0°F, 85.0°F, 90°F . . ..
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Figure 15, Mesh Network

4.3.2 Initial Temperatures

Since three mesh networks are necessary to depict the approximate solution for the
case in Section 3.4.2, a general temperature term can be introduced denoting the space
and time position associated with a given or calculated temperature. Therefore, u(i,j,m)
identifies a particular interior mesh point where i refers to the spatial mesh column in
any mesh, j is a particular mesh, and m the time position or row in the mesh,

The initial temperatures can now be written as u(i, j,0) and are given for all i, j.

4.3.3 Spatial Mesh Size

Sufficient accuracy will usually be obtained if the spatial mesh size, h, is made small.
Therefore, the number of interior mesh points and the number of equations to be solved
will generally be large. Some compromise is involved in selecting a value for h that will
permit satisfactory accuracy with a reasonable number of interior mesh points.

4.3.4 Temperatureatx =r

The temperatures of the spatial mesh column x = r are equal to the saturation
temperature of the coolant used as the expendable heat sink and is a function of ambient
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pressure, flight altitude, or the pressure within the system, Example:
For 0 <t <150:
Time increment, A t = 150 minutes
Total time, ty = 150 minutes
Temperature, u(r,t) = 80°F
For 150 <t < 200:
Time increment, A t = 5 minutes
Total time, t,. = 50 minutes

Temperature, u(r,t) = 80.0°F, 85°F, 90°F . .

4.3.5 Densities

The density of each material used in the construction of the thermal protection system
is as follows:

plppzapsp “ae

4,3.6 Thermal Conductivities

The thermal conductivity of each material used in the construction of the thermal
protection system as a function of temperature is also required. Example:

J=1:
u = 100°F, 200°F, 300°F . . .

k(u) =1.0,1.1,1.2. ..

4.3.7 Specific Heat

The specific heat of each material used in the construction of the thermal protection
system as a function of temperature is also required. Example:

J=1:
u = 100°F, 200°F, 300°F . . .

cp(u) = 20.0, 20.1, 20.2 . ..

4.3.8 Temperature at X = v

The temperature of the compartment atmosphere is a known constant equal to u(v).
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4.3.9 Cross-sectional Area

Every member contributing to the internal flow of heat that does not have the same
cross-sectional area as the representative element chosen is given as S j

4.3.10 Length of Heat Transfer Path

The thickness or length of every member in the direction of heat flow is given as Lj.

4.3.11 Coolant Enthalpy Change

The heat sink capability of the expendable coolant is a function of the ambient pressure
at which the conversion from liquid to a gas takes place. This pressure can generally be
assumed to be equal to that existing at flight altitudes; therefore, it can be related to
flight time, Example:

For 0 <t < 150 minu:es:
Time increment, At = 150 minutes

Total time, ty = 150 minutes

BTU
1b

Enthalpy, hfg = 1050
For 150 <t < 200:
Time increment, At = 5 minutes

Total time, t, = 50 minutes

Enthalpy, hfg = 1049, 1047 . . .

4.4 Program Output

This section lists the desired information resulting from an IBM 7090 Digital
Computer solution of the problem that is identified in Section 3.4.2.

4.4,1 Time Mesh Zize

The size of the time mesh required to satisfy stability criteria must be determined.

4.4.2 Thermal Property Coefficients

The coefficients of the expressions for thermal conductivity (Aoj, Alj' AZj) and

specific heat (B,., B, .) for each material are input requirements.
05" "1j
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4.4.3 Temperature Printout

The temperature at spatial mesh points s, f,0,r,andc atmtimes and the temperature
at allspatial meshpoints at the times indicated will be of interest; for example (tO ts

30 £100 %150 tm’*

4.4.4 Heat Removal Rates
L ]
The instantaneous rates of heat removed by the re-entry and compartment environmental

cooling systems 4, and q, at m times are needed to determine the Qr and Qv'

4.4.5 Total Heat Removed

The total amount of heat removed by the re-entry and compartment environmental
cooling systems, Qr and Qv' are required to determine the coolant weights,

4.4.6 Total Amounts of Expended Coolant

The total weights of coolant expended by the re-entry and compartment environmental
cooling systems, Wr and Wv' are used to calculate total system weights.

4.5 Problem Solution Procedure

This section describes a routine for determining the ‘solution of the problem statement
outlined in Section 3.4.2. If the operations are performed in the sequence listed, the
temperature distributions, rates of heat transfer, total heat removed, and the weight of
the thermal protection system can be calculated. Basically, the procedure is divided
into two sections; first, a sub-routine, which generates preliminary information such as
expressions for k(u) and cp(u), the time mesh size, p, and the transformation of certain

input data that are expressed as a function of flight time so that it coincides with the
calculated time mesh size; and second, the order of solution of the finite difference

equations derived in Sections 3.3 and 3.4. The step-by-step procedures are given in
the subparagraphs that follow.

4.5.1 Thermal Properties

With the thermal conductivity kj and the specific heat CPj as a function of temperature

given, determine the relationships

t 3
"

i Aoj + Alj u+A,.u®, (123)

c:,_,_j s Boj + 8|j u (124)

by the method of least squares as presented in Appendix II.
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4.5.2 Time Mesh Size

4.,5.2.1 From the input of surface temperatures as a function of flight time, pick out the
maximum ug.

4.5.2.2 Solve for the maximum k by inserting ug maximum in place of u inthe expression

2
hy = Ag + Ajju + A, (125)

4.5.2.3 Solve for the maximum cp by inserting ug maximum in place of u in the expression

CD. = Bou +Bn u (126)

4.5.2.4 From the input of material densities, select p, and insert together with h, kj, and
°p1 into

_ Shpl cp|
b = 2%, (127)

4.5.2.5 Repeat steps in paragraphs 4.5.2.2 through 4.5.2.4 for j = 2 to determine pj.

4.5.2.6 Select the smaller value, either py or py, and convert it to the nearest preceding
integer, which is an exact divisor of the total flight time.

4.5.2.7 Transform the initial set of surface temperatures, u(s,t) into a new set with a
time increment equal to p by the process of interpolation.

4.5.2.8 Repeat step in Section 4.5.2.7 for u(r,t) and hfg(r,t)..

4.5.3 Solution of Finite Difference Equations

4.5.3.1 Determine the temperatures for all interior mesh points Uu*, U21, 0 0 oD Unl;
U12' U22. B0 Un2; U13, U23. e s Un3 at time m = 1 from the following equation:
: [
u. . U+ (A +2A,; Uis - )
ijm+ ijm ZOPi hz(Boj+B|j Uijm) 1) 2j Yijm
2 U 2
Wit iom ~2Y0m Yingj,m PVinjm) +4(Rgj +4;j Ujjm+
A, U ) (U -2u;. +U )]
z2j Yijm i+1, j,m ijm i-1,j,m (128)

* Temperatures at specific locations are denoted by U in this section.
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4.5.3.2 Determine the temperature at the exterior mesh points x = f and x = 0 at time
m = 1 from the following equations:

C, Ca
(C,+ Cy+ T)Uf,m+| =C3Ug,maer = n Uf—n,mol +c|Us,mN -Ca, (129)
Cs Cs
C,Uf.m,l-(cs+T) Uo,mer = =Ca= == Youi, mes ' (130)
where
Sa 2
cl = 414 (4A04+2Al4us,mu +2Al4 Uf,m+ A24 Us,mu +
2
2A,, Us.mu Ut mt 42 Uf.m) 2 (131)
A, Ay Az
Co=hRo* 2 Yy mart 7 Yyt 3 Yy i m™
A, A, 2
2 Uf-l,mu Uf,m+ 4 Uf,m ’ (132)
|
Cs= 5(4A05+2A|5 m+t 2A|5 Uo,m"'Azs Ugm +
2
2A,s uf,muo,m + Ags Uo,m ) ’ (133)
C,= oF_F ( 4 S 3 42 s
4= TFFy Uyt 1838.8 U +1267.9 x 10° Ug +3885.6 X 10% Uy, —
USlm— 1838 8 U2 . —1267.9x 10% U2 - 33856 5 v
o,m o,m -9 X% o,m 5.6 X 10" Uy m) » (134)
. A, A A, 2 A,
Cg = Aot 75~ Ugmt _é" Uoer, mes + Py Uo,m+'2—uo,muoo|,mol °
A, 2
“a Uosi, ms (135)

4.5.3.3 Determine the rate of heat transfer at time m = 1 to and from and the rate of
heat storage at the exterior mesh point x = r. Now the rate of heat transfer to r

= T, 2 2 3
Qg = n (4A° Ur—l,mvl _4Aour,mol +2A' Ur-l,m+| —-ZIX'Ur’m’I +AzUr_l' mel +

2 ~ 2 _ 2
AU i ma Yr.me AzUr_|'m.| U mer AU, mn) ' (136)

_ 2 2 3
9G%s © H(“Ao Urmaer — 4AgUr, ,me T 24, Uromer™ 2R, Upy mes FAQUp may ¥

2 2 3
Az Ur,molurn.mn — Az Ur,mnuvn,mou =AU mae ) ’ (137)
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5p, cp, £35S,

9y * = (Urmer =Yram ) > (138)

where Ur' m + 1 is given.
4.5.3.4 Evaluate conditions at x=r and time m +1. Three possibilities exist. If

a, Uy = gt a,, (139)
then no heat is removed by the cooling system, or Qg = 0, and Ur’ m+l= Ur.m +1

(given by input).

b. When 9, > LI + Ve ° (140)

then the heat removed by the cooling system is
9gs = s ~ (955 v 9, ) (141)

and Ur' m+l-= Ur' m + 1 (given by input).

c. Finally, if a, < a,+a, . (142)

then no heat is removed by the cooling system (qu = 0) and Ur' m+1# Ur' m + 1 (given
by input), When condition (c) applies a new Ur‘ m + 1 must be determined from the
following relationship, converting Equation (i42) to an equality

As 3 Ap 2 5P5 cpg 1589

2h Ur,mo|+ [2" (ur-l,mol +Urol,m0l)] Ur,mol + ( P ha
24, A, Az 2 _ A 2 A

h + h  4h -1, mei Tgh_ u'*'-"'") Ur,mer = (_no' Ur-iymer *
A, 2 Ag 3 A A2 3

Zn Y-ume F o Yrime =2 Ui ma + i U me +

5p, cpg2sS
#f’_”__"’_u'm)=o. (143)
p 1

4.5.3.5 Determine the temperature at the external mesh point x=c for m +1 from the
following equation:

f
Yeumst * T o (G Vemiimer * Gl mt Oy v, ) (144)
where
| Ay Ay A2 2
¢, =h_ (Ao"'T Uc-l.mn +_2_ Uc,m"’ P} UC-I,mol +

A A 2
2z 2

2 Uc-i,me1 Ye,om + —q Uc,m) ) (145)
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- 5P7 CD-, 17
Cos —— (146)

and Cp, is the film heat-transfer coefficient at the wall,
4.5.3.6 Determine rates of heat transfer to the re-entry cooling system, q,, and

compartment environmental control system, qy, at time m = 1, The former was
calculated in Section 4.5.3.3. Now q, can be established from the following:

Womer © Ch lUe,mu= Uy ). (147)
4.5.3.7 Determine temperatures at all mesh points and heat-transfer rates 4ds and Ay~

for times m = 2, 3, 4, . . . , n by repeating steps in Sections 4,5.3.1 through 4.5.3.6.

4.5.3.8 Determine the total heat removed at mesh points x = r and x = v during the
mission thus

n
Q =npZ a (148)
ms
and

n
o = X a, (149)

4.5.3.9 Determine the weight of the coolant expended during the mission at mesh points
X =r and X = v thus

n qr

W, = np X (150)
m=| h'g'
n qv

W, =np X —— (151)
ms=1 fgr

This completes the solution of the problem.

4.6 Program Flow Chart

The program flow chart presents in a concise manner a step-by-step solution
procedure for a complex problem involving a number of operations. Two flow charts
outlining the manner of solving the relationships for the case in Section 3.4.2 are shown
in Figures 16 and 17, When the path connecting the events is traced, the sequence of
introducing or storing terms is indicated as well as the origin of each input. A clearer
picture of the method of solution may be obtained if the flow chart of the program is
used in conjunction with the mesh network.
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At this point some comments regarding the solution of certain of the equations in
Section 4.5 should be in order. In general, the majority of the equations involve the
straightforward application of the principles of algebra that result in a rather obvious
solution. On the other hand, the solution of a polynomial, such as Equation (143), involves
some knowledge of the nature of the one valuable root. Of course, the root of interest
must be real; however, this condition by itself is certainly not a sufficient one since it
is entirely feasible that the solution would yield more than one real root. Therefore, a
second condition should be included to further restrict the number of possible results, A
possibility here is to, in some fashion, bound the solution. For instance, if some insight
into a limited range for the one valuable root can be applied by confining the neighborhood
of the solution within finite limits, the probability that more than one real root will lie
within these bounds is low, In fact, the extremes usually can be defined so that one valuable
root will almost always be the only one that satisfies both of the previously mentioned
restrictions.

GIVEN GIVEN
k(u), cplu) Usm
CALCULATE CALCUL ATE SELECT
AOAI A2 Bo BI Usm max.
J
CALCULATE CALCULATE
kz max. cpz max.
GIVEN CALCULATE DETERMINE DETERMINE
p2 Pg p Usm for ea. p
PROGRAM
INPUT

Figure 16. Program Flow Chart for Subroutine
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Figure 17. Program Flow Chart for the Insulated and Cooled Compartment
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5.0 RESULTS

5.1 System Thermal Analysis

5.1.1 General.

Numerical solutions for each of the three problems presented in Section 3 would
represent a considerable effort in view of the number of parameters involved. Such a
treatment of each case is not within the scope of this section; instead, the application of
the finite difference equations and the method of optimizing the design of the thermal
protection system will be illustrated for only one case.

The example selected was that designated in Section 3.4.1 ‘‘“The Insulated and Cooled
Structure.’’ This problem is considered a compromise between the lengthy and, possibly,
less meaningful solutions that are required for the case in Section 3.4.2, and the more
simplified, straightforward approach applying to the case in Section 3.4.3. To clarify the
results, we modified the case in Section 3.4.1 by terminating the solution at x = ¢ (see
Figure 11). In addition, a thermal-conductance term that depended on temperature was
introduced to include the effects of an insulation package on the heat transmitted to the
cooling system. As a result, Equation (28) was modified to incorporate an additional
term.

5.1.2 Program Inputs

This section lists most of the program inputs in tabular form as suggested in Section
4.3. In the case of surface temperatures of the vehicle during re-entry, these tempera-
tures can be presented more conveniently in a graphical manner hecause of the number
involved. Optimum insulation thicknesses will be determined for four histories of surface
temperatures U(s, t), shown in Figure 18, which are typical of those experienced at
various locations on the outer heat shield. The number of curves and the maximum
temperature of each were selected to enable a parametric survey and to facilitate the
presentation of data. A listing of the IBM program input data is available in Table 1.

This table includes the thermal property data determined from the physical makeup
of the thermal protection system, Coefficients for all polynomials were then determined
by the method in Appendix II. The origin of most of this information is included in the
references.

Three thicknesses of insulation were selected as a minimum for demonstrating the
influence of this parameter on the weight of the system. The smallest thickness,
arbitrarily chosen as 0.2 inch, was established in view of the magnitude of the spatial
mesh size. The time mesh size was calculated by employing the stability criteria
discussed in Section 4.5.2. Once this was established, the surface-temperature histories,

Usl through US 4 could be tabulated by listing the temperatures that corresponded to

each time step.

This completed the input requirements for solving the problem.
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Figure 18. History of Surface-Equilibrium Temperature of Vehicle
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PROGRAM INPUTS

ASD-TDR-62-625

Insulation Thickness
(inches)
Inputs 0.6 0.8 1.0
Number of Internal Mesh Points (i) 6 7 8
Coefficients of the Polynomial k(u) A0 0.14 0.14 0.14
(Insulation): A; {-0.177x 1073 |- 0.177x 10 [-0.177 x 1073
A, | 0.103x10° | 0.103x107 | 0.103x107°
Coefficients of the Polynomial cp(u) B0 0.23 0.23 0.23
B 0 0 0
1
Insulation Density (o) 12 12 12
Air Space Conductance Ca(u) AOa
1 0.45 0.45 0.45
Aa =) -3 -3
1 0.4133 x 10 0.4133 x 10 0.4133 x 10
Heat Shield Conductance Cb(u) DO 15.642 15.642 15.642
D, |-195x107 | -195x107° [-19.5x107
D, 1261 x10°0 | 12.61x107® | 12.61 x 1070
Insulation Package Conductance EO 5.33 x 10-2 4.0x 10_2 3.2 x 10_2
Cp (W) E, |8667x107 | 6.5x107 5.2x 107
EZ 0 0 0
oFe 2.884 x 10710 |2.884 x 10710 [2.884 x 10710
Spatial Mesh Size (h) 0.2 0.2 0.2
Time Mesh Size (p) 0.5 0.5 0.5
Number of Time Steps (m) 161 161 161
Initial Temperatures 70 70 70
(except at X = ¢) UXO
Temperature at x = ¢ (UCO‘ Ucl' | 200 200 200
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5.1.3 Program Output

Numerical solutions to the problem were obtained by following a procedure similar
to the one outlined in Section 4.5, which led to many of the outputs suggested in Section
4.4.

The first results are graphical representations of the temperature distribution through
two thicknesses of insulation, 0.6 and 1.0 inch, at the rc-entry times specified. The
surface temperature history, which applies in each case, has been noted and the curves
are presented in Figures 19 through 26.
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Several interesting observations can be made from these results. For 15 minutes after
the start of re-entry, we note that the temperature gradient is zero at some point within
the insulation. On either side of this point, the gradient indicates that heat is conducted
from both the outside and the inside faces of the insulation to internal elements. Once the
temperature of the external surface begins to increase, heat is conducted through the
heat shield and the edges of the insulation package to the inside face of the insulation. The
response of this path is very rapid due to the negligible heat capacity of each of these
components. On the other hand, the heat capacity of the insulation cannot be neglected;
therefore, the transfer gradient through the insulation lags the transfer gradient through
the heat shield supports. Simultaneous conduction along both paths gives the appearance
of a heat generation term at the inside face of the insulation.

As the time from the start of re-entry increases, the point of zero temperature
gradient moves to the right until it passes through the insulation. At this time, heat is
being transferred in one direction only.

The assumption that the temperature of the primary structure is initially 130°F above
the temperature of the insulation influences two directional heat flow, This assumption
does not affect the temperature distribution beyond a 15-minute period for all but one
case, and, in general, any contribution of this assumption to the results is rather insignifi-
cant.

One will also note that the heat shield plays a very small role in attenuating heat
transfer to the primary structure. As mentioned previously, its major function is to
transfer aerodynamically generated heat back across the boundary layer. The equivalent
conductance of this honeycomb panel is relatively high; hence, the temperature gradient
across its thickness is small.

In comparison, the air space between the insulation and the primary structure offers
considerable resistance to the flow of heat as indicated by the temperature drop between
these two surfaces.

The rates of heat transfer to the cooling system are shown in Figures 27 through 30 for
each thickness of insulation as a function of re-entry time. For each, the coolant require-
ments are computed from the value of the integral under each curve. The amounts of
heat absorbed for each computer run are given in Table 2.

TABLE 2
HEAT ABSORBED FOR COMPUTER RUNS
Total Heat Absorbed (BTU per Sq Ft)
Temperature History
Insulation Thickness U U U u
(inches) sl s2 s3 s4
0.6 454 355 149 44
0.8 325 248 101 27
1.0 232 174 68 15

59




ASD-TDR-62-625

1000
~~ 800 i
S INSUL ATION THICKNE SS d \
Ele (INCHES) \
= 0.6 \
= 08
@ /
a
w 400
('8
2 / / /
z / 1.0
&
2 . // /
[ e
E ’/ \
)
o) 10 20 30 40 50 60 70 80

RE-ENTRY TIME (MINUTES )
Figure 27. Effect of Insulation Thickness on Rate of Heat Transfer to Coolant (Surface Temperature Us l)

600
500 A >
INSUL ATION THICKNESS

——

N (INCHES )

. e
= « 200 /
ol £ /
p

0.8

2 00 /!

a \
[+

- / / 1.0

£ 200 -] =
a / / \
[« 4

'—

= /

% 100 y

o 1/

(o) 10 20 30 40 50 60 70 80

RE- ENTRY TIME (MINUTES)
Figure 28. Ef{ect of Insulation Thickness on Rate of Heat Transfer to Coolant (Surface Temperature Us Z)

60




ASD-TDR-62-625

BTU
HR FT2 )

(

HEAT TRANSFER RATE

BTU
HR FT )

(

HEAT TRANSFER RATE

200
INSULATION THICKNESS ////———
(INCHES)
0.6 \\\
150 L
y-\

so iy

yal

o} -]

0 10 20 30 40 50 60 70 80
RE-ENTRY TIME (MINUTES)
Figure 29. Effect of Insulation Thickness on Rate of Heat Transfer to Coolant
Surface Temperature Us 3
80
INSULATION THICKNESS /’\
( INCHES ) oy \
60
/ %
~O / / 1.0 \
2o L 7
o _ _~ /
o} 10 20 30 40 50 60 70 80

RE-ENTRY TIME (MINUTES)

Figure 30. Effect of Insulation Thickness on Rate of Heat Transfer to Coolant
Surface Temperature US 4

61




ASD-TDR-62-625

The maximum rate of heat transfer is shown in Figure 31 and the coolant requirements
are shown in Figure 32 as each is affected by the insulation thickness and the maximum
equilibrium temperature. The use of this latter term as a parameter was justified, since
all temperature histories are of the same duration and the general shape of the curves
is similar.

Figure 32 indicates the heat transmitted to the coolant is nearly zero if the maximum
surface equilibrium temperature is not high for some insulation thicknesses. For this
case, the elimination of the cooling system might be considered.
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Figure 31, Effect of Temperature and Insulation Thickness on Rate of Heat Transfer
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Figure 32. Effect of Temperature and Insulation Thickness on Coolant Weight

5.2 Insulation and Coolant Tradeoff

If the coolant requirements, as shown in Figure 32, are combined with the weight of
the insulation, a relationship between the total weight of the thermal protection system
and the thickness of insulaticn can be demonstrated for a number of outer surface
temperatures. These results are shown in Figure 33 in which the maximum surface
temperature is used as a notation of the particular history (refer to Figure 18), An
examination of these results reveals that the selection of a thickness of insulation can
be made, which, when combined with the amount of coolant required, will result in a
thermal protection system of minimum weight.

This type of presentation may be conveniently used as design information, since the
surface of the re-entry vehicle can be sectioned into temperature zones. The boundaries
of these zones can be judiciously assigned, based on temperature distributions and the
surface temperature history for the re-entry trajectory, which results in maximum
heating. In the case of glide vehicles, temperature gradients on the surface are relatively
insignificant; hence, the total number of zones would be few and can be based on a modest
deviation from an average temperature. As a result, a procedure is established that finds
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application as a practical design tool. The more problematical aspects are those that are
associated with the derivation of analytical relationships and the programming of these in
*ach case. These areas were emphasized in this study.
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Figure 33. Insulation - Coolant Weight Tradeoff
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APPENDIX 1

DERIVATION OF FINITE DIFFERENCE RELATIONSHIPS

In solving a differential equation of the form in Equation (13), one can express
conveniently the temperature distribution, Uy, as an nth degree polynomial containing
(n+1) arbitrary constants as

(1) (2) (3) (n)

U,=a, +ta,x +apx —“+ayg x + -+ + o,x (152)

x o

If x is replaced by the variable

X~ Xg

h (153)

where h is the interval between two successive values of the argument x, the differences
of U,, may now be used to determine the values of the coefficients ay al. Agr e e sy

vV =

thus

() (2) (n=1)
n

AUV =al+202v +3c|3y O
| (n (n-2
AZUV = 2-4-a,+ 3-2-azv + - +n(n_|)ann )
i (154)
ASUV =3.24-a@ +---- "’“("")(ﬂ-z)un(n 3)
AnUv= 9, (n/)-

Since these expressions must hold for all values of x, the coefficients can now be found
by setting v = o. Therefore

2
a = A Uo ......
] o 2 2./ ] ]

Substituting the values for the coefficients into Equation (152), Gregory-Newton's
interpolation formula is obtained thus

() vi?) 2 vin) n
=U,+v Aug, + 27 ATy, + .- .+ =~ A" U, - (155)

Uy

Now the value of a function of x may be found by replacing the function with this inter-
polating polynomial, then differentiating

df(x) A duX du,  dv
= = - (156)

dx dx dv dx X=X
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The derivative of Equation (153) gives

dv

|
? ax (157)

Substituting Equation (157) into Equation (156) gives the derivative

af (x) _ | du,
dx ~ h dv (158)

An approximation of the second derivative of f (X) can be found by again differentiating
Equation (156)

d?t(x) _ d*uy  d [ I du, ] dv
dx? dx? dv h dv dx (S
Recalling that :v z ':— , Equation (159) can be rewritten
3
a2t () l 4% u,
ax? h? dv? (160)

Applying the expression relating the derivative of the function to the derivative of the
interpolation formula (155) gives the first derivative

du | dU I 1 | 1
&2 — [——V—] = h_ (AUO -—_ 2—A2U0+? ASUO-‘;A‘UO'f"'")'(lél)

dx h dv T

Clearly, the first approximation is

d Avu
( - ) = ho :% (Ul_Uo)
dx x=xg
or in general
du .. 1
(dx @ — (U, —U;) (162)

x= i

This approximation is most usefully applied to the boundary condition where the
derivative does not exist for the i-1 element.

The finite difference approximation for the time derivative is found in a similar
manner resulting in

du {
( ) & — (Ump~Um) . (163)
t=t,

Here p is the difference between two successive values of the argument t.

67




ASD-TDR-62-625

Another interpolation formula can be developed by averaging the forward and backward
interpolation formulas of Gauss. The forward interpolation formula expresses the
temperature

! (2} .2 | (3) A3
u=U°+vAU./z+—27v AU°+?/'(v+I) AU,/2+

| (zn—1) 2n-i

....... +(z_n-l_).7(v+n_l) A Uy, +
(2n)
| z2n
- A U +......
(z2n)/ (van-n ° s

In the backward interpolation formula

( (z) 52 T (3),3
u=U°+vAU_|/z+-2-7(v+l) AU°+;—/(v+l) AU_l/z-i-

(2n+1)
coe (ven @Ay —L (v 4a)
(2n)/ (2n+ 1)/
2n+1

Uy, +-o- - (165)

Averaging Equations (164) and (165) gives
Au__ +Av i 2 .2 | 2 A;U_ +ASU_

uEUgty — o IR+ v B 22 =t (166)

which is the central difference formula of Stirling.

If the relationship (158) is applied to Equation (166), an approximation of the first
derivative may be determined

du Au_ +Av 3 + A%
S I ol R i e e Ry (167)
X=Xg h v e 2 6 2
Again, using the first approximation gives
do L Bu_, +Ay, e
(—cf)“xo - 2h 2h (168)

Now the derivative squared term is obtained simply by squaring the right-hand member
of Equation (168)

du | 2 2
(T =g LU -2y, u_,+u_ (169)
b3 l:lo
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From Equation (166), the first approxirnation of the second derivative is

2
(L8, = ] e et

& —5 | —m )
xX=Xp h? dvt v=0 h !

| |
8 (8w = — [(u,~ug -, -u ]

(dz") & —— (U, - 2U, +U,)
ax2 S Yy b2 ¥ ") -1 ! . (170)

This completes the derivation of all finite difference equations that are required to solve
the general heat-transfer equation and the boundary conditions in Section 3.

If the heat diffusion Equation (13) could be solved conveniently by a Fourier series
expansion, we could show that stability of the solution depends on the ratio

kp N ap

M= pc:phz T T n? (171)

Since this would be somewhat lengthy to show, it will just be noted that an exainination

of this parameter is required prior to attempting a solution of the problem. If, for
instance, M < 1/2, each term in the solution of the difference equation will decrease
exponentially with time. This means that round off error, although carried to subsequent
rows, would eventually vanish. On the other hand, if M > 1/2, some terms would increase
exponentially with time, and round off errors would tend to be amplified as the solution
proceeds. Therefore, once an h has been selected, it becomes importanr to choose a
value for p such that M < 1/2 to insure stability of the solution.
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APPENDIX II

METHOD OF LEAST SQUARES

This section reviews a method of determining the constants that appear in the equation
that is selected to represent thermal conductivity and specific heat data, It is the most
useful method and the one most frequently applied since it has the advantage of producing
a unique set of values for the constants of the polynomials. Moreover, these constants
give the most probable equation in the sense that the computed values of k(u) or cp(u)

are the most probable values of the observations, since the residuals are assumed to
follow the Gaussian law of error. In other words, the principle of the method of least
squares asserts that the most representative curve is that for which the sum of the
squares of the residuals is a minimum.

Suppose the given set of observed values (ki' ui), (i=1,2,3,...n), can be represented
by the equation .
k = f(u) (172)
containing r undetermined constants, Al’ A2. 3000 Ar' Then the nth observation
equations, for example
k.= f(u;),

are to be solved for the r unknowns. If r = n there are just enough conditions to determine
the constants; if n < r, there are not enough conditions and the problem is indeterminate;
but, in general, n>r, and there are more conditions than there are unknowns. In the
general case, the values of an m which satisfy any r of these equations will not satisfy
the remaining n - r equations, and the problem is to determine the set of values of a;
that will give the most probable values of k. Let

vi = k; -k (173)

be the residuals or deviations of the computed values from the observed values, where
k; is the value of k obtained by substituting u = uj in k = f(u). On the basis of the Gaussian
law of error, the probability of obtaining the observed values kj is

n
L n® R v
R Gv—) I LR (174)
n n
P is a maximum where viz is a minimum. Since s =% vi2 is a function
iz i=
of the r unknowns, Al' A2. 5008 Ar' it follows that the necessary conditions for a
minimum are
a -1 a S 6 S
=0 —_ =0 Y e s ——m 2 0 .
A, " dA, A, (175)
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Moreover, each vi is a function of a therefore,

Jds L d 2

= 2 amre 0 2
3 Am = aAm(v' +Vz+ +Vn)
or
9s = 2v 9v, + 2v ._a_v_z. S caoobaoo +2v, dvn .
dA, ' 9Am 2 JAn, 0Am
Jds L dvj
= 2 2 vi —— s, {m=1,2, -, 7r)

A, =, 0Am (176)

These formulas, Equation (175), are called the normal equation.

if the r functions in Equation (175) are linear in thc r unknown AI’AZ' 00 .,Ar,then

these equations can be solved immediately. This will certainly be the case if f(u) is a
polynomial, Let

f j-l
flu) = ¥ AU Q177)
P=
so that
r j—
vi = X A -k - (178)
j=a
Then SYi _ . u,™”' , and the normal equations assume the form, with the aid of
m
Equation (176),
o 4 i- m-)
2 ( Z Aiui - kj ) uj =0, (m=l,2,---r)- (179)

One should note that the equation that is obtained by setting m = 1 is

n
Zv=o0 (180)
=

Rearranging the terms in Equation (180) and collecting the coefficients of Aj gives

r n
Z(Zu )& =Z vk ms iz, 1s1)
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Now the r linear equations can be solved for the values of the r unknowns Al’ A2. A3,

5o oo Ar‘ For example:

U K
1 1.7
2 1.8
3 2.3
4 3.2
Now express f(u) = A +Au+Au2 thenv, = A + A,u +Au2—k and
1 2 37 i 1 27 371 i’
dvj =, dv; T dv; . Uiz
OA, dAz aA3
The normal equations are
ds a dvi
= 22 v 8 q
aAm iz I aAm
n dv:
v 2oL,
=1 OAm
so that
4
ov;
2 v —— =0, (m=1,2,3)
iz ' 9Am
or in other terms
o) 2
2 (A+ AU+ AU -k )-1 =0,

4
Z (A +A,U;+AU2 -k} U =0 ,

4

2 2
.Z (A +A, U+ Az U7 =k )-US =0
1=

If the coefficients of Aj are collected and the normal equations put in the form of

Equation (182), the following three equations result:
4 4
4A, + (.Z ui) A,

(Z7)

(i v;) A ( %Iui)Az+(§:u )

Ay
Ay
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Now

& 2
Zui=14+4+9+I6 = 30, efc.

so that
4A, + 104, +30A5 = 9,

IOA, + 30A, +100A, =25,

30A, +100A, +354A; = 80.8 *
When these equations are solved for the coefficients,
A, =2 , Apg=-0.5, A3=0.2.
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